Selasa, 01 Oktober 2019

REAKSI ASAM DAN BASA

REAKSI ASAM BASA



Hasil gambar untuk asam basa

A. KONSEP ASAM BASA

1. Teori Asam Basa Arrhenius


   Ahli kimia Swedia, Svante Arrhenius (1884) mendefinisikan asam sebagai senyawa yang menghasilkan ion hidrogen (H͒͒+) jika dilarutkan dalam air. Beberapa senyawa yang bukan asam akan menunjukan sifat asam jika sudah dilarutkan kedalam air. Salah satu contohnya adalah gas hidrogen klorida. Jika gas HCl dilarutkan dalam air akan menghasilkan ion hidrogen (H+) sehingga larutan HCl yang terbentuk dikatakan bersifat asam. Reaksi yang terjadi dalam larutan HCl sebagai berikut:
\boxed{~HCl_{(aq)} \rightarrow H^+_{(aq)} + Cl^-_{(aq)}~}

   Basa oleh Arrhenius didefinisikan sebagai senyawa yang menghasilkan ion hidroksida (OH-) jika dilarutkan dalam air. Pada umumnya, senyawa yang disebut sebagai basa merupakan senyawa ionik yang mengandung gugus hidroksida. Misalnya magnesium hidroksida, Mg(OH)2 yang terdapat dalam obat maag. Jika Mg(OH)2 dilarutkan dalam air akan menghasilkan ion OH- seperti persamaan berikut.
Mg(OH): Mg2+ + 2OH-

  Larutan asam dan basa dapat dibedakan menjadi 2 . asam kuat dan basa kuat adalah asam dan basa yang mengalami ionisasi sempurna di dalam larutannya. Artinya jika asam kuat atau basa kuat dilarutkan dalam air , maka mereka akan terurai semua menjadi ion-ionnya. Asam kuat yang telah dikenal adalah HCl, HNO3, HClO4 ,dab H2SO4. Beberapa contoh basa kuat adalah NaOH, KOH, dan Ca(OH)2. 
  Sebaliknya, asam lemah maupun basa lemah hanya terionisasi sebagian didalam larutannya. Reaksi ionisasi asam lemah dan basa lemah merupakan reaksi kesetimbangan. Jadi, jika asam lemah maupun basa lemah dilarutkan dalam air, hanya  sebagian yang terurai menjadi ion-ionnya. Sebagian lagi kembali membentuk molekul netral. Contoh asam lemah adalah CH3COOH, HF , H2CO3 , dan H3PO4. Contoh basa lemah adalah NH3.


2. Teori Asam Basa Bronsted-Lowry

     Menurut Bronsted lowry, asam adalah molekul atau ion yang memberikan proton (donor proton) , yaitu ion H+. Basa adalah molekul atau ion yang menerima proton (akseptor proton).
Jadi, dalam teori asam basa Bronsted Lowry, ion hidrogen (proton) dipindahkan dari asam ke basa. Asam dan basa saling membentuk pasangan dengan kation atau anion yang dihasilkannya, dan dikatakan sebagai pasangan asam basa konjugasi. Semakin kuat suatu asam, semakin lemah basa konjugasinya, demikian pula sebaliknya. Jadi asam kuat memiliki basa konjugasi yang lemah , dan sebaliknya.

3. Teori Asam Basa Lewis

  Menurut Lewis, asam adalah senyawa yang dapat menerima pasangan elektron. Sebaliknya, basa adalah senyawa yang dapat memberikan pasangan elektron. Teori asam basa Lewis dapat digunakan untuk menjelaskan reaksi-reaksi dari senyawa yang tidak memiliki ion hidrogen maupun ion hidroksida.



B. SIFAT ASAM DAN BASA

1. Ionisasi dalam air
   Air murni umumnya dianggap sebagai larutan nonelektrolit. Artinya, di dalam air murni tidak terdapat ion-ion yang dapat menghantarkan arus listrik. Reaksi ionisasi air merupakan reaksi kesetimbangan.


2. Derajat Keasaman (pH)
   Ukuran keasaman atau kebasaan suatu larutan ditentukan dari konsenterasi ion hidrogen. Untuk memudahkan pengukuran, konsenterasi ion hidrogen dinyatakan dalam pH (pangkat hidrogen). konsep pH dikemukakan oleh ahli biokimia dari denmark S.P. Sorensen pada tahun 1909.


3. Indikator Asam dan Basa
   Indikator asam basa adalah suatu zat yang memberikan warna tertentu pada pH larutan tertentu. Indikator asam basa yang biasa digunakan di laboratorium adalah kertas lakmus. Jika lakmus biru dicelupkan ke dalam larutan asam akan berubah menjadi merah pink, sedangkan jika lakmus merah dicelupkan kedalam larutan basa akan menjadi biru.


Referensi
Buku kimia kelas XI
Pengarang    : Suwardi, Soebiyanto, Dkk.
Penerbit        : Departemen Pendidikan Nasional
Tahun           : 2009
Tingkat         : SMA kelas XI

Selasa, 24 September 2019

IKATAN DAN UNSUR


IKATAN dan UNSUR KIMIA



PENGERTIAN IKATAN KIMIA

          Ikatan kimia adalah sebuah proses fisika yang bertanggung jawab dalam interaksi gaya tarik menarik antara dua atom atau molekul yang menyebabkan suatu senyawa diatomik atau poliatomik menjadi stabil. Kekuatan ikatan-ikatan kimia sangatlah bervariasi. Pada umumnya, ikatan kovalen dan ikatan ion dianggap sebagai ikatan "kuat", sedangkan ikatan hidrogen dan ikatan van der Waals dianggap sebagai ikatan "lemah".
          Teori tentang ikatan kimia lahir dari gagasan Profesor Fisika dan Kimia dari Amerika Serikat yaitu Gilbert. N. Lewis. Dalam artikelnya di tahun 1916 tentang “The atom and the molecules”, Lewis meneliti tentang kesulitan golongan gas mulia (VIIIA) membentuk suatu ikatan kimia. Diduga bila gas mulia bersenyawa dengan unsur lain, tentunya ada suatu keunikan dalam konfigurasi elektronnya yang dapat mencegah persenyawaan dengan unsur-unsur lain.
Apabila dugaan tersebut benar, maka suatu atom yang bergabung dengan atom lain membentuk suatu senyawa yang mungkin mengalami perubahan dalam konfigurasi elektronnya sehingga mengakibatkan atom-atom tersebut lebih menyerupai gas mulia. Berdasarkan gagasan itu, lahirlah suatu teori yang disebut Teori Lewis, yaitu:
a. Elektron-elektron yang berada pada kulit terluar (dikenal sebagai elektron valensi) memegang peranan utama dalam pembentukan ikatan kimia.
b. Pembentukan ikatan kimia mungkin terjadi dengan 2 cara:
  1. Karena adanya perpindahan satu atau lebih elektron dari satu atom ke atom lain sedemikian rupa sehingga terdapat ion positif dan ion negatif dan keduanya saling tarik-menarik karena muatannya yang saling berlawanan akan membentuk ikatan ion.
  2. Karena adanya pemakaian bersama pasangan elektron di antara atom-atom yang berikatan. Jenis ikatan yang terbentuk disebut ikatan kovalen.
c. Perpindahan elektron atau pemakaian bersama pasangan elektron berlangsung sedemikian rupa sehingga setiap atom yang berikatan mempunyai suatu konfigurasi elektron yang stabil yaitu konfigurasi dengan 8 elektron valensi.

JENIS-JENIS IKATAN KIMIA

  1. Ikatan ion adalah ikatan yang terjadi berdasarkan serah terima atau perpindahan elektronnya, ikatan ini terjadi antara ion positif dan ion negatif dan juga antara unsur logam dan non logam, serta antara unsur golongan IA dan IIA (+), golongan VIA dan VIIA(-). Contoh senyawa ion antara lain: NaCl, MgCl2, CaCl2, KOH, KCl, dan lainnya.
  2. Ikatan kovalen adalah ikatan yang terjadi berdasarkan pemakaian pasangan elektron bersama, ikatan ini terjadi antara unsur non-logam dan non-logam. Ikatan kovalen memiliki 3 jenis yaitu ikatan kovalen biasa, ikatan kovalen rangkap, dan ikatan kovalen koordinat. Contoh ikatan kovalen antara lain: H20, HF, HCl, CO2, NH3, Cl2, I2, Br2, O2, dan lainnya.
  3. Ikatan logam adalah ikatan yang terjadi antar atom-atom unsur logam. Ikatan ini terjadi antara elektron valensi logam yang membentuk elektron valensi. Ikatan logam dapat menjadikan suatu logam yang keras namun lentur, tidak mudah patah meski ditempa, titik leleh dan titik didih yang tinggi, dan nilai konduktor listrik dan panas yang baik.

JENIS-JENIS IKATAN KOVALEN

1. Ikatan Kovalen Biasa


Ikatan Kovalen biasa adalah ikatan kovalen yang jumlah pemakaian elektron bersamanya adalah satu pasang.

2. Ikatan Kovalen Rangkap


Ikatan Kovalen rangkap adalah ikatan kovalen yang jumlah pemakaian elektron bersamanya lebih dari satu pasang.

3. Ikatan Kovalen Koordinat


Ikatan kovalen koordinat adalah ikatan kovalen yang pemakaian elektron bersamanya hanya berasal dari satu atom.

Perbedaan Ikatan Ion dan Kovalen


Selain perbedaan dari jenis-jenis ikatannya, ikatan ion dan kovalen juga memiliki perbedaan atas sifat fisika dan kimia. Perbedaan tersebut ditunjukkan pada tabel di bawah ini.

Suatu ikatan kovalen dapat dibedakan juga berdasarkan kepolaran ikatanatom-atom di dalam molekulnya yaitu ikatan kovalen polardan ikatan kovalen nonpolarKepolaran senyawaadalah tingkah laku suatu zat yang menyerupai medan magnet, yaitu terdapat kutub sementara yang disebut momen dipol.
Perbedaan kepolaran (polar dan nonpolar) didasarkan atas suatu nilai keelektronegatifan. Keelektronegatifan adalah kecenderungan suatu atom untuk bermuatan negatif atau untuk untuk menangkap elektron dari atom lain. Nilai-nilai keelektronegatifan suatu benda ditunjukkan menggunakan skala pauling. Harga skala pauling berkisar antara 0,7-4,0. Nilai skala pauling pada suatu atom ditunjukkan pada gambar di bawah.


Berdasarkan keelektronegatifannya, ikatan kovalen polar adalah ikatan yang dibentuk oleh dua unsur yang berbeda di mana nilai keelektronegatifan pasti juga berbeda sehingga menghasilkan dipol, contoh: HCl, HBr, HI, H2O. Sedangkan ikatan kovalen nonpolar adalah ikatan yang dibentuk oleh dua unsur yang sama di mana nilai keelektronegatifannya pasti sama. Contoh: H2, Cl2, O2, N2,
Harga keelektronegatifan untuk unsur logam nilainya kecil sedangkan unsur nonlogam adalah besar. Berdasarkan harga keelektronegatifan kedua atom yang berikatan dapat ditentukan jenis ikatannya. Jika nilai selisih kedua atom yang berikatan:
  1. Lebih kecil dari 0,5 termasuk ikatan kovalen nonpolar.
  2. Lebih besar dari 2 termasuk ikatan ion.
  3. Antara 0,5-2 termasuk ikatan kovalen polar.

PENGERTIAN UNSUR KIMIA

Unsur kimia adalah suatu spesies atom yang memiliki jumlah proton yang sama dalam inti atomnya (yaitu, nomor atom, atau Z, yang sama). Sebanyak 118 unsur telah diidentifikasi, yang 94 di antaranya terjadi secara alami di bumi. Sedangkan 24 sisanya, merupakan unsur sintetis. Terdapat 80 unsur yang memiliki sekurang-kurangnya satu isotop stabil dan 38 unsur yang merupakan radionuklida yang, seiring berjalannya waktu, meluruh menjadi unsur lain. 

NOMOR ATOM

Nomor atom suatu unsur sama dengan jumlah proton dalam masing-masing atom, dan mendefinisikan unsur kimia. Sebagai contoh, seluruh atom karbon mengandung 6 proton dalam inti atomnya; sehingga nomor atom karbon adalah 6. Atom karbon dapat memiliki jumlah neutron yang berbeda; atom dari unsur yang sama tetapi memiliki jumlah netron yang berbeda dikenal sebagai isotop.
Jumlah proton dalam inti atom juga menentukan muatan listrik, yang pada gilirannya menentukan jumlah elektron atom tersebut dalam kondisi tak terionisasi. Elektron menempati orbital atom yang menentukan beragam sifat kimia atom. Jumlah neutron dalam inti atom biasanya berpengaruh sangat kecil pada sifat unsur kimia (kecuali dalam kasus hidrogen dan deuterium). Oleh karena itu, seluruh isotop karbon memiliki sifat kimia yang hampir identik karena kesemuanya memiliki enam proton dan enam elektron, meskipun atom karbon dapat mempunyai, misalnya, 6 atau 8 neutron. Inilah dasar pemikiran penentuan karakteristik unsur kimia menggunakan nomor atom, dan bukannya nomor massa atau massa atom.
Lambang nomor atom adalah Z

ISOTOP

Isotop adalah atom-atom unsur yang sama (yaitu, dengan jumlah proton yang sama dalam inti atomnya), tetapi memiliki jumlah neutron yang berbeda.

MASSA ISOTOP DAN MASSA ATOM

Nomor massa unsur, A, adalah jumlah nukleon (proton dan neutron) dalam inti atom. Isotop yang berbeda dari unsur tertentu dibedakan berdasarkan nomor massanya, yang secara konvensional ditulis sebagai superskrip di sebelah kiri lambang atom (misalnya 238U). Nomor massa selalu bilangan bulat dan memiliki satuan "nukleon". Sebagai contoh, magnesium-24 (24 adalah nomor massa) adalah sebuah atom dengan 24 nukleon (12 proton dan 12 neutron).
Sementara nomor massa hanya berupa pencacahan jumlah neutron dan proton, sehingga menghasilkan bilangan bulat, nomor massa suatu atom berupa bilangan riil yang menyatakan massa isotop (atau "nuklida") unsur tertentu, dinyatakan dalam satuan massa atom (lambang: u). Secara umum, nomor massa nuklida tertentu memiliki nilai yang sedikit berbeda dari massa atomnya, karena
  1. massa masing-masing proton dan neutron tidak tepat 1 u;
  2. elektron hanya sedikit kontribusinya terhadap massa atom ketika jumlah neutron melebihi jumlah proton, dan (akhirnya)
  3. energi ikatan nuklir.
Sebagai contoh, massa atom klorin-35 hingga lima angka bermakna adalah 34,969 u dan klorin-37 adalah 36,966 u. Namun, massa atom dalam u untuk masing-masing isotop sangat mendekati nomor massa sederhananya (selalu dalam rentang 1%). Satu-satunya isotop yang memiliki massa atom tepat bilangan asli adalah 12C yang secara definitif memiliki massa tepa 12, karena u didefinisikan sebagai ​112 dari massa atom karbon-12 alami bebas dalam keadaan dasar.
Berat atom standar (umum disebut sebagai "berat atom") suatu unsur adalah rata-rata massa atom seluruh isotop unsur kimia yang ditemukan di lingkungan tertentu, tertimbang sesuai kelimpahan isotopnya, relatif terhadap satuan massa atom. Angka ini dapat berupa fraksi yang tidak mendekati bilangan bulat. Misalnya, massa atom relatif klorin adalah 35,453 u, yang sangat jauh berbeda dari bilangan bulat karena merupakan rata-rata dari 76% klorin-35 dan 24% klorin-37. Ketika nilai massa atom relatif berbeda lebih dari 1% dari bilangan bulat, akibat dirata-ratakan, hal itu menunjukkan bahwa keberadaannya di alam diwakili oleh lebih dari satu isotop dalam jumlah yang banyak.

KEMURNIAN KIMIA dan KEMURNIAN ISOTOPIS

Kimiawan dan ilmuwan nuklir memiliki definisi yang berbeda terkait unsur murni. Dalam kimia, unsur murni berarti suatu zat yang seluruh (atau hampir seluruh) atomnya memiliki nomor atom atau jumlah proton, yang sama. Sementara ilmuwan nuklir mendefinisikan unsur murni sebagai sesuatu yang mengandung hanya satu isotop stabil.
Sebagai contoh, kawat tembaga secara kimia berkemurnian 99,99% jika 99,99% nya adalah atom tembaga, dengan masing-masing 29 proton. Namun ia tidak murni secara isotop karena tembaga biasa mengandung dua isotop stabil, 69% 63Cu dan 31% 65Cu, dengan jumlah proton yang berbeda. Namun, batangan emas murni dinyatakan murni secara kimia maupun isotop karena emas biasa hanya mengandung satu isotop, 197Au.

ALOTROP


Atom unsur berkemurnian kimia dapat berikatan kimia satu dengan lainnya melalui lebih dari satu cara, memungkinkan unsur murni terdapat dalam banyak struktur kimia (penataan ulang spasial atom), yang dikenal sebagai alotrop, yang memiliki sifat berbeda. Sebagai contoh, karbon dapat dijumpai sebagai intan, yang memiliki struktur tetrahedral di sekeliling masing-masing atom karbon; grafit, yang memiliki lapisan atom karbon dengan struktur heksagonal yang ditumpuk; grafena, yang merupakan lapisan tunggal grafit yang sangat kuat; fulerena, yang memiliki bentuk hampir bulat, dan tabung nano karbon, yang berbentuk tabung dengan struktur heksagonal (bahkan inipun berbeda satu dengan lainnya dalam hal sifat listrik). Kemampuan suatu unsur untuk berada dalam lebih dari satu bentuk struktur dikenal sebagai 'alotropi'.

TABEL PERIODIK

Hasil gambar untuk spu

Sifat unsur kimia seringkali dirangkum menggunakan tabel periodik, yang mengatur secara elegan unsur-unsur berdasarkan kenaikan nomor atom menjadi baris ("periode") yang mendasari perulangan sifat kimia dan fisik kolom ("golongan") secara periodik. Tabel standar saat ini berisi 118 unsur yang telah dikonfirmasi per 10 April 2010.

NOMOR ATOM
Nomor atom atau nomor proton (simbol Z) dari suatu unsur kimia adalah jumlah proton yang ditemukan dalam inti atom. Jumlahnya identik dengan jumlah muatan pada inti. Nomor atom secara unik mengidentifikasi elemen kimia. Dalam atom yang tidak bermuatan, nomor atom juga sama dengan jumlah elektron.


REFERENSI



Minggu, 08 September 2019

BILANGAN KUANTUM


BILANGAN KUANTUM

Image result for bilangan kuantum
PENGERTIAN BILANGAN KUANTUM

Bilangan kuantum (quantum number) adalah bilangan yang menyatakan kedudukan atau posisi elektron dalam atom yang diwakili oleh suatu nilai yang menjelaskan kuantitas kekal dalam sistem dinamis. Bilangan kuantum menggambarkan sifat elektron dalam orbital.

bilangan kuantum menentukan tingkat energi utama atau jarak dari inti, bentuk orbital, dan spin elektron. setiap sistem kuantum dapat memiliki satu atau lebih bilangan kuantum.

Bilangan kuantum merupakan salah satu ciri khas dari model atom mekanika kuantum atau model atom modem yang dicetuskan oleh Erwin Schrodinger. Dalam mekanika kuantum, bilangan kuantum diperlukan untuk menggambarkan distribusi elektron dalam atom hidrogen dan atom-atom lain. Bilangan-bilangan ini diturunkan dari penyelesaian matematis persamaan Schrodinger untuk atom hidrogen. 

JENIS BILANGAN KUANTUM

1.     Bilangan kuantum utama (n) yang menyatakan tingkat energi


Bilangan kuantum utama (primer) digunakan untuk menyatakan tingkat energi utama yang dimiliki oleh elektron dalam sebuah atom. Bilangan kuantum utama tidak pernah bernilai nol. Bilangan kuantum utama dapat mempunyai nilai semua bilangan positif, yaitu 1,2,3,4 dan seterusnya. Sedangkan kelopak atom dinyatakan dengan huruf K,L,M,N dan seterusnya. 
contoh:
n=1 elektron berada pada kelopak K;
n=2 elektron berada pada kelopak L;
n=3 elektron berada pada kelopak M;
n=4 elektron berada pada kelopak N; dan seterusnya
Bilangan kuantum utama juga berhubungan dengan jarak rata-rata elektron dari inti dalam orbital tertentu. Semakin besar n, semakin besar jarak rata-rata elektron dalam orbital tersebut dari inti dan oleh karena itu semakin besar orbitalnya.

2.     Bilangan kuantum azimut/momentum sudut (l) yang menyatakan bentuk orbital.

Image result for bilangan kuantum azimut
Bilangan kuantum azimut sering disebut bilangan kuantum anguler (sudut). Energi sebuah elektron berhubungan dengan gerakan orbital yang digambarkan dengan momentum sudut. Momentum sudut tersebut dikarakterisasi menggunakan bilangan kuantum azimut. Bilangan azimut menyatakan bentuk suatu orbital dengan simbol  "huruf L kecil". Bilangan kuantum azimut juga berhubungan dengan jumlah subkelopak. Nilai ini menggambarkan subkelopak yang dimana elektron berbeda. Untuk subkelopak s, p, d, f bilangan kuantum azimut berturut-turut adalah 0,1,2,3
Nilai bilangan kuantum azimut atau "" ini bergantung pada nilai bilangan kuantum utama atau "n" . Untuk nilain tertentu,  mempunyai nilai bilangan bulat yang mungkin dari 0 sampai (n-1). Bila n-1, hanya ada satu nilai  yakni . Bila n=2, ada dua nilai , yakni 0 dan 1. Bila n=3, ada tiga nilai , yakni 0,1, dan 2. Nilai-nilai  biasanya ditandai dengan huruf s, p, d, f.
jadi bila =0, kita mempunyai sebuah orbital s; bila =1, kita mempunyai orbital f; dan seterusnya.
Sekumpulan orbital-orbital dengan nilai n yang sama seringkali disebut kulit. Satu atau lebih orbital dengan nilai n dan  yang sama dirujuk selalu subkelopak. Misalnya kelopak dengan n=2 terdiri atas 2 subkelopak, =0 dan 1 (nilai-nilai  yang diizinkan untuk n=2). Subkelopak-subkelopak ini disebut subkelopak 2s dan subkelopak 2p di mana 2 melambangkan nilai n, sedangan s dan p melambangkan nilai .
3.     Bilangan kuantum magnetik (m) yang menyatakan orientasi orbital dalam ruang tiga dimensi.
Image result for bilangan kuantum magnetik
Bilangan kuantum magnetik menyatakan tingkah laku elektron dalam medan magnet. Tidak adanya medan magnet luar membuat elektron atau orbital mempunyai nilai n dan l yang sama tetapi berbeda m. Namun dengan adanya medan magnet, nilai tersebut sedikit berubah. Hal ini dikarenakan timbulnya interaksi antara medan magnet sendiri dengan medan magnet luar.
Bilangan kuantum magnetik ada karena momentum sudut elektron, gerakannya berhubungan aliran arus listrik. Karena interaksi ini, elektron menyesuaikan diri di wilayah tertentu sekitar inti. Daerah khusus ini dikenal sebagai orbital. Orientasi elektron di sekitar inti dapat ditentukan dengan menggunakan bilangan kuantum magnetik m. 

Bila l =0, maka m=0. Bila l =1, maka terdapat tiga nilai m yaitu -1,0,dan -1. Bila l =2, maka terdapat lima nilai m yaitu -2,-1,0,+1, dan +2. Jumlah m menunjukkan jumlah orbital dalam subkulit dengan nilai l tertentuDi dalam satu subkulit, nilai m bergantung pada nilai bilangan kuantum azimut/momentum sudut l. Untuk nilai l tertentu, ada (2l + 1) nilai bulat m sebagai berikut: -l, (-l + 1), ..., 0, ..., (+l - 1), +l
Bila l =0, maka m=0. Bila l =1, maka terdapat tiga nilai m yaitu -1,0,dan -1. Bila l =2, maka terdapat lima nilai m yaitu -2,-1,0,+1, dan +2. Jumlah m menunjukkan jumlah orbital dalam subkulit dengan nilai l tertentu.
4.     Bilangan kuantum spin (s) yang menyatakan spin elektron pada sebuah atom.
Image result for bilangan kuantum spin
Bilangan kuantum spin menyatakan momentum sudut suatu partikel. Spin mempunyai simbol "s" atau sering ditulis dengan m(bilangan kuantum spin magnetik). Suatu elektron dapat mempunyai bilangan kuantum spin s = +1/2 atau -1/2
Nilai positif atau negatif dari spin menyatakan spin atau rotasi partikel pada sumbu. Sebagai contoh, untuk nilai s=+1/2 berarti berlawanan arah jarum jam (ke atas), sedangkan s=-1/2 berarti searah jarum jam (ke bawah). Diambil nilai setengah karena hanya ada dua peluang orientasi, yaitu atas dan bawah. Dengan demikian, peluang untuk mengarah ke atas adalah 50% dan peluang untuk ke bawah adalah 50%.


Bentuk Orbital Atom 

Orbital s
Orbital p
Orbital d
Orbital f

Konfigurasi Elektron
  1. Asas Aufbau: Elektron menempati orbital-orbital dimulai dari tingkat energi yang terendah, dimulai dari 1s, 2s, 2p, dan seterusnya seperti urutan subkulit yang terlihat pada gambar berikut.
  1. Asas larangan Pauli: Tidak ada dua elektron dalam satu atom yang memiliki keempat bilangan kuantum yang sama. Setiap orbital maksimum diisi oleh 2 elektron yang memiliki spin yang berlawanan (ms = +½ dan ms = −½).
  1. Kaidah Hund: Jika ada orbital dengan tingkat energi yang sama, konfigurasi elektron dengan energi terendah adalah dengan jumlah elektron tak berpasangan dengan spin paralel yang paling banyak.

Orbital s adalah orbital dengan l = 0 berbentuk bola dengan inti atom pada bagian tengah. Oleh karena bola hanya memiliki satu orientasi, semua orbital s hanya memiliki satu nilai ml, yaitu ml = 0. Orbital 1s memiliki densitas (kerapatan) elektron tertinggi pada bagian inti atom dan kemudian densitas semakin menurun perlahan-lahan setelah menjauh dari inti atom. Orbital 2s memiliki dua daerah dengan densitas elektron tinggi. Di antara kedua daerah tersebut terdapat simpul bola, di mana probabilitas menemukan elektron pada daerah tersebut menurun hingga nol (ψ2 = 0). Pada orbital 3s, terdapat tiga daerah dengan densitas elektron tinggi dan dua simpul. Pola bertambahnya simpul orbital s ini masih terus berlanjut dengan orbital 4s, 5s, dan seterusnya.
representasi orbital 1s 2s 3s
Representasi orbital 1s, 2s, dan 3s
(Sumber: McMurry, John E., Fay, Robert C., & Robinson, Jill K. 2016. Chemistry (7th edition). New Jersey: Pearson Education, Inc.)
Orbital p adalah orbital dengan l = 1 berbentuk seperti balon terpilin dengan dua cuping. Kedua cuping terletak pada dua sisi inti atom yang saling bersebrangan. Inti atom terletak pada bidang simpul orbital p, yakni di antara dua cuping yang masing-masing memiliki densitas elektron tinggi. Orbital p memiliki tiga jenis orientasi ruang, px, py, dan pz, sebagaimana terdapat tiga nilai ml yang mungkin, yaitu −1, 0, atau +1. Ketiga orbital p tersebut terletak saling tegak lurus pada sumbu x, y, dan z koordinat Kartesius dengan bentuk, ukuran, dan energi yang sama.
gambar orbital 2p
Representasi orbital 2p: px, py, dan pz
(Sumber: McMurry, John E., Fay, Robert C., & Robinson, Jill K. 2016. Chemistry (7th edition). New Jersey: Pearson Education, Inc.)
Orbital d adalah orbital dengan l = 2. Orbital d memiliki lima jenis orientasi, sebagaimana terdapat lima nilai ml yang mungkin, yaitu −2, −1, 0, +1, atau +2. Empat dari lima orbital d, antara lain dxy, dxz dyz, dan dx2−y2, memiliki empat cuping seperti bentuk daun semanggi. Orbital d kelima, dz2, memiliki dua cuping utama pada sumbu z dan satu bagian berbentuk donat pada bagian tengah.
orbital 3d
Representasi orbital 3d: dz2, dx2−y2, dxy, dxz, dan dyz
(Sumber: Chang, Raymond & Goldsby, Kenneth A. 2016. Chemistry (12th edition). New York: McGraw-Hill Education)
Orbital f adalah orbital dengan l = 3. Orbital f memiliki tujuh jenis orientasi, sebagaimana terdapat tujuh nilai ml yang mungkin (2l + 1 = 7). Ketujuh orbital f memiliki bentuk yang kompleks dengan beberapa cuping.
bilangan kuantum orbital 4f
Representasi ketujuh orbital 4f
(Sumber: Atkins, Peter & Jones, Loretta. 2010. Chemical Principles: The Quest for Insight (5th edition). New York: W.H. Freeman & Company)


Setelah memahami hubungan keberadaan elektron dalam atom dengan orbital pada teori atom mekanika kuantum, berikut akan dibahas konfigurasi elektron, yaitu penyusunan elektron-elektron dalam orbital-orbital pada kulit-kulit atom multi elektron. Aturan-aturan dalam penentuan konfigurasi elektron berdasarkan orbital, antara lain:
tingkat energi subkulit
Add caption
Urutan tingkat energi subkulit
(Sumber: Spencer, James N., Bodner, George M., & Rickard, Lyman H. 2011. Chemistry: Structure and Dynamics (5th edition). New Jersey: John Wiley & Sons, Inc.)

diagram orbital dan konfigurasi elektron
Diagram orbital dan konfigurasi elektron berdasarkan orbital dari 10 unsur pertama
(Sumber: Gilbert, Thomas N. et al. 2012. Chemistry: The Science in Context (3rd edition). New York: W. W. Norton & Company, Inc.)